

Image De-Raining Using Deconvolutional Neural

Network

Tejas Bhatia

Student, Department of Computer Science

BITS PILANI K K Birla Goa Campus

Zuarinagar, Goa, India

f20150111@goa.bits-pilani.ac.in

Shivin Thukral

Student, Department of Computer Science

BITS PILANI K K Birla Goa Campus

Zuarinagar, Goa, India

f20150350@goa.bits-pilani.ac.in

Saurabh Majumdar

Student, Department of Computer Science

BITS PILANI K K Birla Goa Campus

Zuarinagar, Goa, India

f20150078@goa.bits-pilani.ac.in

Abstract—Noise produced in images due to rain are a very

common problem. Not only they make the background obscure,

but also decrease the visual clarity of the image. This poses a

problem when such rainy images have to be used for image

classification or recognition tasks. In this paper, we present a

simple neural network that generates a de-rained image from an

input rainy image. The neural network is a simple

deconvolutional neural network, which uses mean squared loss to

train over a set of images, learning to remove the noise rain from

the input image.

Keywords—single image deraining, mean squared loss,

deconvolutional neural net

I. INTRODUCTION

Neural networks have gained a lot of popularity recently in
solving a number of image processing problems. Convolutional
neural networks (CNNs) have been primarily implemented for
solving deep learning tasks involving images such as image
classification, generation and recognition. Very common
instances include identifying faces, objects, traffic signs, along
with self-driving cars. A CNN comprises of a number of
convolutional and sampling layers followed by an activation
and/or dense (fully connected) layers. It is able to recognize
scenes and features from an image, and suggest relevant
captions for the image.

II. PROPOSED METHOD

In this section, we present a detail of the neural network

architecture along with a few insight into few of the

terminology.

A. Network Architecture

Our neural network employs a deconvolutional neural
network of a symmetric structure. At first, there is a set of three
convolutional layers, each of which is activated by a ReLu
activation function, and weights initialized with the Xavier
initialization. The number of filters doubles in consecutive
convolutional layers.

Following the convolutional layers is the second set of
three deconvolutional (transpose convolutional) layers. Each of
these is also activated by a ReLu activation function, and
weights similarly initialized with the Xavier initialization
method. The number of filters halves in consecutive
deconvolutional layers, except in the last layer which has only
3 filters.

The final architecture is as follows:

CXR(K)-CXR(2K)-CXR(4K)-DXR(2K)-DXR(K)-DXR(3)

 where CXR(N) is a convolutional layer with Xavier
initialization and ReLu activation of N filters, and DXR(N) is a
deconvolutional layer with Xavier initialization and ReLu
activation.

 Besides this, mean squared loss function was used as the
loss function of the network. The optimizer used to minimize
this loss function was Adam Optimizer, implemented along
with a exponentially decaying learning rate. Mini-batch
descent was used, and weights were updated for every mini-
batch.

B. Terminology

1. Adam Optimizer : Adam is an optimization algorithm

that can used instead of the classical stochastic

gradient descent procedure to update network weights

iterative based in training data. It was presented by

Diederik Kingma from OpenAI and Jimm Ba from

the University of Toronto in their 2015 ICLR paper

(poster) titled “Adam: A Method for Stochastic

Optimization“.

Adam Op is the combination of two other extensions

of stochastic gradient descent, namely:

 Adaptive Gradient Algorithm (AdaGrad)

 Root Mean Square Propagation (RMSProp)

2. Xavier Initialization : In this method, we need to pick

the weights from a Gaussian distribution with zero

mean and a variance of 1/N, where N specifies the

number of input neurons. In the original paper, the

authors take the average of the number input neurons

and the output neurons.

3. Learning Rate Decay : In order to ensure that the

learning converges when the loss function is near its

minima, the learning rate is decreased over time/steps

so that a lesser learning rate allows a finer descent

over to the minimum of the loss function.

III. EXPERIMENT AND RESULTS

In this section, we present details of the how the training
was performed, as well as the values of hyperparameters that
were tuned by the end of the training. Presented along with this
are a few illustrations of the results on a test sample.

A. Training and Test Data

The training was performed on 700 images, in which rain
had been added synthetically to obtain the corresponding rainy
image from the ground truth image. The test set comprises of
100 images. Results of the network on a test sample of 21
images is mentioned in Table I. A real rainy image was also
tested, the result of which can be seen visually in Fig I.

B. Hyperparameters

 Learning Rate : The Adam optimization was started
with an initial learning rate of 0.001, implemented with
a exponential decay of 0.1 after every 500 steps.

 Mini-Batch Size : A mini-batch size of 8 images was
used.

 Training steps : A total number of 8,000 iterations (each
iteration of 8 images each) was run over the entire 700
images training set.

 Value of K : In the convolutional and deconvolutional
layers, value K = 16 was used.

 Stride and padding : A stride of 1 and no padding was
used for all the layers

 Filter size : The filter size used for the six layers was
3x3, 5x5, 4x4, 4x4, 5x5, 3x3 respectively.

Sample test
image

PSNR (in dB) Accuracy (MSE)

1 20.6213 563.56

2 19.5002 729.56

3 25.2283 195.09

4 17.6647 1113.27

5 20.4798 582.22

6 18.2225 979.09

7 21.7190 437.70

8 22.6094 356.56

9 24.6081 254.84

10 22.1286 398.33

11 18.2233 978.92

12 17.3309 1209.75

13 23.5586 286.56

14 19.1395 792.73

15 27.0886 127.12

16 26.1534 157.66

17 21.2687 485.52

18 18.4883 190.97

19 21.4897 461.42

20 21.4241 468.45

21 18.8646 844.52

Average 21.2021 587.80

 Table I. Test sample results

http://dpkingma.com/
https://jimmylba.github.io/
http://www.iclr.cc/doku.php?id=iclr2015:main
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

USING T

CONCLUSION

In this paper, we proposed a neural network architecture for
the purpose of deraining images. A simple deconvolutional
neural network was used. While there are a number of
techniques in deep learning out there such as General
Adversarial Networks (GANs) and Recurrent Neural Networks
(RNNs), our architecture also achieved noteworthy results,
producing an average PSNR of >20 dB.

ACKNOWLEDGMENT

This work was supported by Professor Tirtharaj Dash, of
Department of Computer Sciences, BITS Pilani K K Birla
Campus Institute.

REFERENCES

[1] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia, “Deep Convolutional

Neural Network for Image Deconvolution”

[2] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, “Learning
Deconvolution Network for Semantic Segmentation”.

