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Abstract—Noise produced in images due to rain are a very 

common problem. Not only they make the background obscure, 

but also decrease the visual clarity of the image. This poses a 

problem when such rainy images have to be used for image 

classification or recognition tasks. In this paper, we present a 

simple neural network that generates a de-rained image from an 

input rainy image. The neural network is a simple 

deconvolutional neural network, which uses mean squared loss to 

train over a set of images, learning to remove the noise rain from 

the input image. 

Keywords—single image deraining, mean squared loss, 

deconvolutional neural net  

I. INTRODUCTION  

Neural networks have gained a lot of popularity recently in 
solving a number of image processing problems. Convolutional 
neural networks (CNNs) have been primarily implemented for 
solving deep learning tasks involving images such as image 
classification, generation and recognition. Very common 
instances include identifying faces, objects, traffic signs, along 
with self-driving cars. A CNN comprises of a number of 
convolutional and sampling layers followed by an activation 
and/or dense (fully connected) layers. It is able to recognize 
scenes and features from an image, and suggest relevant 
captions for the image.  

II. PROPOSED METHOD 

In this section, we present a detail of the neural network 

architecture along with a few insight into few of the 

terminology. 

A. Network Architecture 

Our neural network employs a deconvolutional neural 
network of a symmetric structure. At first, there is a set of three 
convolutional layers, each of which is activated by a ReLu 
activation function, and weights initialized with the Xavier 
initialization. The number of filters doubles in consecutive 
convolutional layers.  

Following the convolutional layers is the second set of 
three deconvolutional (transpose convolutional) layers. Each of 
these is also activated by a ReLu activation function, and 
weights similarly initialized with the Xavier initialization 
method. The number of filters halves in consecutive 
deconvolutional layers, except in the last layer which has only 
3 filters. 

The final architecture is as follows: 

CXR(K)-CXR(2K)-CXR(4K)-DXR(2K)-DXR(K)-DXR(3) 

 where CXR(N) is a convolutional layer with Xavier 
initialization and ReLu activation of N filters, and DXR(N) is a 
deconvolutional layer with Xavier initialization and ReLu 
activation. 



 Besides this, mean squared loss function was used as the 
loss function of the network. The optimizer used to minimize 
this loss function was Adam Optimizer, implemented along 
with a exponentially decaying learning rate. Mini-batch 
descent was used, and weights were updated for every mini-
batch. 

B. Terminology 

 

1. Adam Optimizer : Adam is an optimization algorithm 

that can used instead of the classical stochastic 

gradient descent procedure to update network weights 

iterative based in training data. It was presented by 

Diederik Kingma from OpenAI and Jimm Ba from 

the University of Toronto in their 2015 ICLR paper 

(poster) titled “Adam: A Method for Stochastic 

Optimization“.  

Adam Op is the combination of two other extensions 

of stochastic gradient descent, namely: 

 Adaptive Gradient Algorithm (AdaGrad)  

 Root Mean Square Propagation (RMSProp)  
 

2. Xavier Initialization : In this method, we need to pick 

the weights from a Gaussian distribution with zero 

mean and a variance of 1/N, where N specifies the 

number of input neurons. In the original paper, the 

authors take the average of the number input neurons 

and the output neurons. 

 

3. Learning Rate Decay : In order to ensure that the 

learning converges when the loss function is near its 

minima, the learning rate is decreased over time/steps 

so that a lesser learning rate allows a finer descent 

over to the minimum of the loss function. 

 

III. EXPERIMENT AND RESULTS 

In this section, we present details of the how the training 
was performed, as well as the values of hyperparameters that 
were tuned by the end of the training. Presented along with this 
are a few illustrations of the results on a test sample. 

A. Training and Test Data 

The training was performed on 700 images, in which rain 
had been added synthetically to obtain the corresponding rainy 
image from the ground truth image. The test set comprises of 
100 images. Results of the network on a test sample of 21 
images is mentioned in Table I. A real rainy image was also 
tested, the result of which can be seen visually in Fig I. 

B. Hyperparameters 

 Learning Rate : The Adam optimization was started 
with an initial learning rate of 0.001, implemented with 
a exponential decay of 0.1 after every 500 steps. 

 Mini-Batch Size : A mini-batch size of 8 images was 
used. 

 Training steps : A total number of 8,000 iterations (each 
iteration of 8 images each) was run over the entire 700 
images training set. 

 Value of K : In the convolutional and deconvolutional 
layers, value K = 16 was used. 

 Stride and padding : A stride of 1 and no padding was 
used for all the layers 

 Filter size : The filter size used for the six layers was 
3x3, 5x5, 4x4, 4x4, 5x5, 3x3 respectively. 

 

 

 

 

Sample test 
image 

PSNR (in dB) Accuracy (MSE) 

1 20.6213 563.56 

2 19.5002 729.56 

3 25.2283 195.09 

4 17.6647 1113.27 

5 20.4798 582.22 

6 18.2225 979.09 

7 21.7190 437.70 

8 22.6094 356.56 

9 24.6081 254.84 

10 22.1286 398.33 

11 18.2233 978.92 

12 17.3309 1209.75 

13 23.5586 286.56 

14 19.1395 792.73 

15 27.0886 127.12 

16 26.1534 157.66 

17 21.2687 485.52 

18 18.4883 190.97 

19 21.4897 461.42 

20 21.4241 468.45 

21 18.8646 844.52 

Average 21.2021 587.80 

         Table I. Test sample results 
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USING T 

CONCLUSION 

 

In this paper, we proposed a neural network architecture for 
the purpose of deraining images. A simple deconvolutional 
neural network was used. While there are a number of 
techniques in deep learning out there such as General 
Adversarial Networks (GANs) and Recurrent Neural Networks 
(RNNs), our architecture also achieved noteworthy results, 
producing an average PSNR of >20 dB. 
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